Circulating Immune Cells Mediate a Systemic RNAi-Based Adaptive Antiviral Response in Drosophila

نویسندگان

  • Michel Tassetto
  • Mark Kunitomi
  • Raul Andino
چکیده

Effective antiviral protection in multicellular organisms relies on both cell-autonomous and systemic immunity. Systemic immunity mediates the spread of antiviral signals from infection sites to distant uninfected tissues. In arthropods, RNA interference (RNAi) is responsible for antiviral defense. Here, we show that flies have a sophisticated systemic RNAi-based immunity mediated by macrophage-like haemocytes. Haemocytes take up dsRNA from infected cells and, through endogenous transposon reverse transcriptases, produce virus-derived complementary DNAs (vDNA). These vDNAs template de novo synthesis of secondary viral siRNAs (vsRNA), which are secreted in exosome-like vesicles. Strikingly, exosomes containing vsRNAs, purified from haemolymph of infected flies, confer passive protection against virus challenge in naive animals. Thus, similar to vertebrates, insects use immune cells to generate immunological memory in the form of stable vDNAs that generate systemic immunity, which is mediated by the vsRNA-containing exosomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster.

Most organisms have evolved defense mechanisms to protect themselves from viruses and other pathogens. Arthropods lack the protein-based adaptive immune response found in vertebrates. Here we show that the central catalytic component of the RNA-induced silencing complex (RISC), the nuclease Argonaute 2 (Ago-2), is essential for antiviral defense in adult Drosophila melanogaster. Ago-2-defective...

متن کامل

Drosophila cells use nanotube-like structures to transfer dsRNA and RNAi machinery between cells

Tunnelling nanotubes and cytonemes function as highways for the transport of organelles, cytosolic and membrane-bound molecules, and pathogens between cells. During viral infection in the model organism Drosophila melanogaster, a systemic RNAi antiviral response is established presumably through the transport of a silencing signal from one cell to another via an unknown mechanism. Because of th...

متن کامل

Natural Selection Drives Extremely Rapid Evolution in Antiviral RNAi Genes

RNA interference (RNAi) is perhaps best known as a laboratory tool. However, RNAi-related pathways represent an antiviral component of innate immunity in both plants and animals. Since viruses can protect themselves by suppressing RNAi, interaction between RNA viruses and host RNAi may represent an ancient coevolutionary "arms race." This could lead to strong directional selection on RNAi genes...

متن کامل

Previous Exposure to an RNA Virus Does Not Protect against Subsequent Infection in Drosophila melanogaster

BACKGROUND Immune priming has been shown to occur in a wide array of invertebrate taxa, with individuals exposed to a pathogen showing increased protection upon subsequent exposure. However, the mechanisms underlying immune priming are poorly understood. The antiviral RNAi response in Drosophila melanogaster is an ideal candidate for providing a specific and acquired response to subsequent infe...

متن کامل

Making connections in insect innate immunity.

I mmune response in the arthropod vector to virus infection is a critical determinant of transmission for arboviruses such as West Nile virus (WNV). The immune response modulates outcomes of infection such as viral load, incubation period required for transmission, and viral pathogenesis in the vector (1, 2). As insects appear to lack an adaptive immune response characteristic of vertebrates, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 169  شماره 

صفحات  -

تاریخ انتشار 2017